
26 E:CO Vol. 13 Nos. 1-2 2011 pp. 26-37

Over the last decade, the field of so-called Agile software development has
grown to be a major force in the socio-economic arena of delivering qual-
ity software on time, on budget, and on spec. The acceleration in changing
needs brought on by the rise in popularity of the Internet has helped push
Agile practices far beyond their original boundaries, and possibly into do-
mains where their application is not the optimal solution to the problems
at hand. The question of where Agile software development practices and
techniques make sense, and where are they out of place, is a valid one. It
can be addressed by looking at software development as a complex en-
deavour, and using tools and techniques from the Cynefin method and
other models of social complexity.

Introduction

Over the course of the last decade, a soft revolution has taken place in the
field of software development. Experiences with projects delivering late
and over budget have led people to question some of the basic tenets of

software project development and management. Starting with a few provoca-
tive theses in Kent Beck’s 1999 book eXtreme Programming, the field of so-called
Agile software development has grown to be a major force in the socio-eco-
nomic arena of delivering quality software to people on time, on budget, and on
spec. The acceleration in changing needs brought on by the rise in popularity of
the Internet has helped push Agile practices far beyond their original boundar-
ies, and possibly into domains where their application is not the optimal solu-
tion to the problems at hand.

So, where do Agile software development practices and techniques make sense,
and where are they out of place? To answer that question, it is necessary to first
understand how, and more importantly why, Agile practices work. In the mid
1990s, it was maintained that practices such as eXtreme Programming could not
possibly work, although even then dozens of projects successfully completed
had proved otherwise. Later, after sufficient empirical evidence had accumu-
lated to irrefutably prove that Agile practices do work, the question of why they
worked still remained.

On Understanding Software Agility—A Social Complexity Point Of View
E:CO Issue Vol. 13 Nos. 1-2 2011 pp. 26-37

On Understanding Software Agility—
A Social Complexity Point Of View
Joseph Pelrine
MetaProg GmbH, CHE

Applied

27Pelrine

As a consequence of the increasing complexity and unpredictability of the world
around us, Agile practice is increasingly seen as the solution. Agile represents a
new paradigm in the truest sense, a complete abandonment of old methods
that cannot be done in half measures. At its core, Agile addresses complexity
in a manageable fashion, attuned to the needs of the human psyche. The Ag-
ile approach, though, constitutes a revolution in our modes of thinking, work-
ing and interacting. Agile processes have grown and developed as the body of
knowledge acquires new ideas from its practitioners. Expansion is not always a
positive force, however. The discipline that originally allowed Agile to explode
linear, mechanistic development practices has often vanished, replaced by a car-
go-cult “by-the-rules” interpretation of Agile based on checklists. It seems today
that some ‘Agile’ teams are practicing nothing more than ‘air guitar and attitude’
(to quote Alan Kay).

Ultimately, models are only as good as the people applying them. Too many
teams have come to regard Agile as something like a cookery recipe—follow
this set of instructions and procedures for a tasty result. But in software develop-
ment, as in cooking, what you get out is not simply the sum of what you put in.
We need to develop an understanding of what makes Agile work, and indeed
what makes it fail. This understanding is a prerequisite for sustaining and scaling
Agile efforts. Acknowledging that Agile is not working in a particular situation is
an inherent part of Agile practice, but it’s one that’s often ignored.

The purpose of this paper is to explore the following questions:

•	 Is software development (in whole or in part) a socially complex endeavour?

•	 What can be gained by treating it as complex, and using tools and tech-
niques from social complexity science?

•	 Why do Agile practices work so well?

Why is Agile the best method around for meeting challenges in software devel-
opment? As projects become more complex, and customer requirements ever
more ambitious but ever less clearly defined, how does Agile help developers
produce usable software on time and on budget? Despite the recent quantum
shift in the field towards the adoption of Agile, many organizations have not yet
made the conceptual adjustments necessary to apply it successfully. No method
is without its detractors, and those who have yet to be convinced by Agile can
point to the lack of hard evidence, of rigorous analysis, of a theoretical, scientific
basis, in the literature. For Agile fans, rigorous does not mean rigid, and it is not
‘anti-Agile’ to question the assumptions on which we base our processes, quite
the opposite is true!

The core realization inherent in Agile is that people build software, that team dy-
namics are fundamental to it, and that teams of people are complex and unpre-
dictable. The need to factor psychological and cognitive concepts into project
design and implementation is novel in a world where mechanization and unifor-

28 E:CO Vol. 13 Nos. 1-2 2011 pp. 26-37

mity are frequently encountered, and often admired, within corporate cultures.
A more realistic model of corporate information sharing began with Knowledge
Management and its applications, but Agile goes much farther.

Modern software development is performed by teams of motivated individu-
als. The prevailing attitude for much of the field’s history, though, has been to
treat software development as a predictable ‘factory’ process, where adding a
given amount of money, time, programmers and managers will produce the de-
sired result. Within this context, the development process is broken down into
a sequential pathway, with deliverable outcomes predicted at set points. This
‘traditional’ approach is exemplified by the Waterfall model. It can work—if the
requirements are known, in detail, right from the start, the product is straight-
forward, and nothing goes horribly wrong. But who has ever worked on a proj-
ect like that? Successful Waterfall projects do exist, but they are few and far be-
tween, and on closer analysis may not be adopting ‘pure’ linear management
models—some flexibility, the beginnings of Agility, has crept in!

Trying to establish computing as an engineering discipline led people to be-
lieve that managing projects in computing is also an engineering discipline. En-
gineering is for the most part based on Newtonian mechanics and physics, es-
pecially in terms of causality. Events can be predicted, responses can be known
in advance and planning and optimize for certain attributes is possible from the
outset. Effectively, this reductionist approach assumes that the whole is the sum
of the parts, and that parts can be replaced wherever and whenever necessary
to address problems. This machine paradigm necessitates planning everything
in advance because the machine does not think. This approach is fundamentally
incapable of dealing with the complexity and change that actually happens in
projects.

Traditional Agile
Sequential Iterative

Defined Empirical
Plan-driven Result-driven

Big-bang Incremental
Specialised teams Cross-functional teams

Test at end Test-first
Figure 1 Traditional vs. Agile.

Consider what happens if you manage a project like a production line. Develop-
ers are assigned tasks, code is pumped through, and the finished product rolls
off at the end. There are two problems with this paradigm. Firstly, the production
line approach is more suited to generating multiple repetitive units, something
that is rarely entailed in software development. Secondly, as soon as the product
stops working at the end, the entire production line must be analyzed and fixed
to solve the fault. Usability is a good example—often, aspects of product usabil-

29Pelrine

ity are left until the end stages of a project, with the expectation that it can be
fine-tuned as needed. Frequently, there are flaws deep within the software that
are not trivial to fix. The whole process must be reworked, but the team has al-
ready given it massive investment in terms of resources, time and effort. For the
author, adopting Agile becomes the task of increasing awareness of, and finding
the best process for answering the question, ‘when do you want to know you
have a problem?’ (That assumes, naturally, that you do want to know you have a
problem, an equally important point!)

One of the most highly developed skills in contemporary Western civilization
is dissection: the split-up of problems into their smallest possible components.
We are good at it. So good, we often forget to put the pieces together again
(Toffler, 1984)

The reductionist approach described by Toffler has served us well in the past,
but we need to move beyond it. Many people still regard building software as a
complicated undertaking, but in fact it is a defining example of a complex or a
‘wicked’ problem. The concept of wicked problems was originally proposed by
Horst Rittel and Marcus Webber (Rittel & Webber, 1973). Wicked problems have
incomplete, contradictory, and changing requirements; and solutions to them
are often difficult to recognize as such, because of complex interdependencies.
Rittel and Webber stated that while attempting to solve a wicked problem, the
solution of one of its aspects may reveal or create other, even more complex
problems. Rittel expounded on the nature of ill-defined design and planning
problems, which he termed ‘wicked’ (that is, messy, circular, aggressive) to con-
trast against the relatively ‘tame’ problems of mathematics, chess, or puzzle solv-
ing. In the author’s experience, certain ground rules of Agile software develop-
ment have emerged that address the limitations of the Waterfall and other linear
development paradigms in tackling such problems.

Communication and team dynamics represent the other area where Agile dif-
fers fundamentally older development paradigms. The functioning of the team,
and the contributions and roles of individuals within the team, are fundamental
to productivity. Team roles are no longer fixed, but members are allowed to self-
organise. Management takes on the role of facilitating and coaching the team,
rather than issuing orders. Scrum (Schwaber & Beedle, 2001) sees self-organiz-
ing teams as a fundamental aspect of the process. In applying Scrum, there is
an emphasis on skills, not knowledge, and there are few rules. The author has
distilled three ‘rules of thumb/rules of Scrum’ from experience in practice: the
first is ‘we don’t make mistakes, we learn,’ i.e., set up a safe-fail work environment
where it is OK to learn and to correct behavior, estimates etc., on the basis of that
learning. Secondly ‘whoever has the risk, makes the decision.’ Increase aware-
ness of roles, rights, and responsibilities of the various partners in the develop-
ment process. And last ‘if you’re not having fun, we’re doing something wrong.’
Keeping people happy and motivated isn’t easy over a long project, but there
are techniques that can be used from the outset to promote good team practice.

30 E:CO Vol. 13 Nos. 1-2 2011 pp. 26-37

Getting Comfortable With Complexity—
Sense Making The Agile Way

What is a complex system? Complexity theory can be considered one
of the most revolutionary products of 20th century thought. Theories
of chaos, complexity and emergence have shattered the conceptual

frameworks of science, technology and economics, and provide unifying themes
across previously distant disciplines. Scientists, sociologists, economists and en-
gineers are finding common ground that transcends the terms of reference of
each particular field. We have gone from the assumption that everything can be
modelled given enough time, intelligence or processing power, to the realiza-
tion that not everything we experience can be drilled into predictable patterns
that we can recognise and understand. The human mind does not readily grasp
complexity. It is counterintuitive; we prefer to recognise patterns in mechanistic
systems.

How can a complex system be defined? Ask ten or twenty people working on
complexity and emergence to describe such a system and you will get as many
answers. One of the best sets of criteria for complexity is provided by professor
George Rzevski:

1.	 INTERACTION—A complex system consists of a large number of diverse
components (Agents) engaged in rich interaction;

2.	 AUTONOMY—Agents are largely autonomous but subject to certain laws,
rules or norms; there is no central control but agent behavior is not random;

3.	 EMERGENCE—Global behavior of a complex system “emerges” from the in-
teraction of agents and is therefore unpredictable;

4.	 FAR FROM EQUILIBRIUM—Complex systems are “far from equilibrium” be-
cause frequent occurrences of disruptive events do not allow the system to
return to the equilibrium;

5.	 NONLINEARITY—Nonlinearity occasionally causes an insignificant input to
be amplified into an extreme event (butterfly effect);

6.	 SELF-ORGANIZATION—Complex systems are capable of self-organization in
response to disruptive events, and;

7.	 CO-EVOLUTION—Complex systems irreversibly coevolve with their environ-
ments.

Is software development a complex domain, and if so, why? This is the key ques-
tion. At one level, the software development process seems to fulfil all of Rzevs-
ki’s criteria, but on another level there seem to be exceptions and questions.
This question may not be able to be answered definitely, but as we will see, in-
teresting things happen when we TREAT software development as complex. We
might also question which other domains may benefit from this treatment.

31Pelrine

Many customers and developers alike regard building software as a complicated
undertaking, but in fact it is a prime example of a complex problem. In adopt-
ing Agile processes, the field is beginning to address this and to become more
comfortable with complexity. Unfortunately, the typical Agilist perception of
complexity is not quite aligned with any of the main scientific definitions of the
term. Agile literature abounds with romanticized, subjective interpretations of
terms such as complexity, self-organization, emergence, which can only be un-
derstood by remembering that ‘a little knowledge is often a dangerous thing’.

If we even succeed in establishing that developing software is a complex en-
deavour, a wicked problem, how then do we address it effectively? Complexity
is counterintuitive to many. This is one of the reasons that a mechanistic, Newto-
nian view of projects has persisted in management thought.

Even as it was toppled from its unassailable position in science, Newtonian
mechanics remained firmly lodged as the mental model of management,
from the first stirrings of the industrial revolution right through the advent of
modern-day MBA studies (Petzinger, 1999).

Complexity theory represents software development more realistically than the
engineering model. Understanding the theory is only the first step. How can
complex problems be tackled practically on a daily basis? How can one differ-
entiate easily between the complex and, e.g., complicated aspects of a complex
domain? The art of management and leadership is having an array of approach-
es and being aware of when to use which approach.

Thinking About Complex Problems

The challenges of a Wicked problem are manifold. At the outset, goals may
be unclear, yet expectations are high. We are tempted to set out a grand
plan, mapping the project from start to finish, with meticulous alloca-

tion of time and resources. Yet the chances of such a plan being followed are
remote—even if the initial stages appear to be going well, reality will rapidly
cause divergence from the pathway. New information, changing variables and
requirements, external factors such as competitor activity, cannot be factored in
to a plan made months before. However, how many times do managers insist
on struggling forward with a battered, modified version of the original plan?

This tendency to cling to our initial assumptions and plotted course is down
to the way our minds deal with new situations. The process of first-fit pattern
matching evolved to make us capable of fast decisions in danger, based on pre-
vious experience. Once that ‘fit’ has been made it’s hard for us to let go and con-
sider alternatives within a complex problem. It also makes humans bad at cut-
ting their losses and changing tack mid-project. Research shows we value things
we already have more highly than things of equal or greater value that we don’t
possess, for example. We’re also good at seeing patterns where none exist, and

32 E:CO Vol. 13 Nos. 1-2 2011 pp. 26-37

imputing causality in random chains of events. A classic example is cumulative
winnings or losses from betting on heads or tails in a coin toss. These purely
random outputs can be modelled by a first-order Markov chain, which as is well
known, readily exhibits pseudo cycles and pseudo trends, with stationary mean
and non-stationary variance.

The problem of how to figure out a solution to a complex problem goes fur-
ther. It is another part of complexity science known as multi-ontological sense
making. The sense making process says that there is not one fit solution. Sense
making is looking at things pre-hypothetically, that is crossing the line between
unknown and known. As G. Spencer Brown said in his book The Laws of Form
(Spencer-Brown, 1979), the first thing to do is to draw a distinction, which is ex-
actly drawing a line between unknown and known. What we can know is cause
and effect, which is the basic observation we make, i.e. phenomenology. We see
something happen along the temporal axis and we often input causality: the
first caused the second. Because our level of resolution of perception allows us
to perceive them as to separate events, we interpret a causal connection be-
tween them. I push that light switch and a light goes on, I do it again and again
and the light always changes. So I assume that there has to be some repeatable
cause of connection. In this way we can predict the future.

Dave Snowden says, “sense making is the way that humans choose between
multiple possible explanations of sensory and other input as they seek to con-
form the phenomenological with the real in order to act in such a way as to
determine or respond to the world around them.”

A basic premise of sense making is that we need to understand our thought
processes when we analyze things. Our opinion, our evaluation of something
says as much about us as it does about the thing we are looking at. This is called
cognitive bias, and it influences our interpretation of everything around us, for
example, what we consider to be complex.

Agile As A Technique For Addressing Complexity

The basic science necessary to understand complex systems was just start-
ing to be established when the first Agile literature was published. At that
time, the works of Stacey, Nonaka, and others sufficed to provide ideas and

impulses for some Agile pioneers, but lacked the full breadth and rigour neces-
sary for providing a foundation for understanding the Agile process as a whole.
Only with the publication of Dave Snowden’s papers on the Cynefin model did a
system emerge that finally allowed researchers and practitioners to understand
social complexity science, and its position as the theoretical basis of software
Agility.

This paper will discuss one of many aspects of social complexity science, the
Cynefin approach, and one of its practical applications to Agile software devel-
opment. Many aspects of software development fall into the complex domain.

33Pelrine

Figure 2 The Cynefin Framework: Common Summary

The Cynefin sense-making model has been described in a number of papers
(Kurtz & Snowden, 2001; Snowden, 2005), and will not be covered in detail here.
In addition to the sense-making model, though, the Cynefin method contains
a number of techniques and exercises, which can be used to help groups make
sense of their domain, helping them understand which methods and techniques
can then be best applied.

In a study conducted over a number of years, the author has run the Cynefin
‘butterfly stamping’ exercise (see Cognitive Edge methods in the references)
with over 300 people involved in Agile software development, with the goal
of sensitizing them to scientific definitions of complexity and related concepts,
of interpreting their cognitive biases related to software development, and of
understanding whether software development as a whole could be considered
a complex domain. During an introductory session, the participants are asked to
brainstorm and collect topics they deal with and activities they engage in as part
of their work. Later, after explaining the Cynefin model, definitions of the differ-
ent domains, and the sense-making process, they do the exercise by assigning
to the different Cynefin domains a set of situations, themes, and subjects pro-
vided by Dave Snowden, and which the participants were agnostic about. After
“warming up” with these situations, themes, and subjects, and getting an active
awareness for the meaning of the different domains, the participants then make
sense of the activities and topics they identified and collected themselves.

34 E:CO Vol. 13 Nos. 1-2 2011 pp. 26-37

Simple
18%

Complicated
25%

Complex
38%

Chaotic
16%

Unknown
3%

Figure 3 Breakdown Of Typical Activities In Software Development

Table 1 offers a sample of typical activities provided by participants, together
with their sense-making results:

Simple Complicated Complex Chaotic Unordered

Knowing when
a task is done

Ambitious
(political) time-

line

Changing
requirements

Arguing
about coding

standards

No release
deadline

Monitoring
actual time

spent
Fixing the build

Countering a
belief in magic

Retrospectives
without

consequence

Resource
shortage

Featuritis
Finding who to

talk to
Task Estimation

Project volume
too big

Lack of trust

Table 1 Some Typical Software Development Activities

Interpreting the results of the exercises led to the following realizations:

•	 Software development is a rich domain, with aspects and activities in all the
different domains. The interactions between these aspects and activities are
themselves often of a complex nature.

•	 Software development is a multi-level domain with self-similar characteris-
tics, i.e., activities often tend to consist of sub-activities, each of which may
be located in a different domain to the basic activity.

•	 The activities tend to be weighted more to the complicated and complex do-
mains, with activities related to the coding aspect of software development
landing in the complicated (or sometimes simple) domain, and activities as-
sociated with project management landing in the complex (sometimes cha-
otic) domain. Tasks dealing with interaction with a computer tended to be
in the ordered domains, tasks dealing with interaction with other humans
tended to be in the un-ordered, i.e., complex and chaotic, domains.

35Pelrine

•	 The highest percentage of tasks and activities were in the complex do-
main. Although this is not sufficient to argue that software development as
a whole is complex, it does suggest that many parts of it are amenable to
analysis and treatment using complexity-based tools and techniques.

Success In Software Development Is Only Retrospectively Coherent

One thing that makes complex systems complex is their causality. As Dave
Snowden says. ‘If the system is chaotic/random then agent behavior is
deterministic, which means I can use statistical instruments. If it’s con-

strained, then the constraint structure allows predictability/repeatability. Strong
constraints produce linear causality; weaker constraints provide repeatability
that may be non-linear. However the moment you get the phase shift into a
coevolutionary relationship between agents and system then there is no repeat-
ability except by accident. In that context there is no meaningful causality, and
any causality is only retrospectively coherent.’

In an ordered system, if you do something, you expect a specific result. Do it
again, expect the same result. It’s that simple. In a complex system, causality
emerges as the system itself emerges, so that at the end, you can say how you
got to where you are, but you can’t guarantee that by doing exactly the same
things, you’ll get to the same place again—and you probably won’t. In com-
plex systems, we say the causality is retrospectively coherent. A classic example
of retrospective coherence is task estimation. Before you do a task, it’s almost
impossible to estimate how long it will take. Afterwards, though, you can say
exactly how long it took, and why it took that long. The same goes for projects.
As a project goes on, the reasons for its success become established, not before.
After it’s over, you can say that the project was a success, and that certain things
took place during the project—but you cannot say that the project was a suc-
cess because these certain things took place!

Now shift the focus to a project. We tend to make the mistakes above when it
comes to project planning. What worked last time? Why? Well, it must have been
the people, the methodology, the meeting schedule—let’s do it the exact same
way again. Is it any surprise, then, that a project planned on this basis is likely to
be a flop?

Contrary to Einstein’s definition, in a socially complex system, insanity is doing
the same thing over and over again and expecting the same result!

Complex Activities Require A Probe-Sense-Respond Model Of Action

Now that we have a reasonable basis for asserting that software develop-
ment (as a whole) is a complex endeavour, or rather treating is as such,
let’s turn back to the Cynefin model. Since causality in the complex do-

main is retrospectively coherent, we’ll always only know afterwards whether our
efforts were crowned with success. To maximise flexibility in the face of this un-

36 E:CO Vol. 13 Nos. 1-2 2011 pp. 26-37

certainty, the Cynefin method suggests a probe-sense-respond technique. Set
boundaries for the system to emerge. Employ numerous probes, which will pro-
vide feedback on what works and what doesn’t. Apply sense-making to the re-
sults to the feedback. Then respond by continuing or intensifying the things that
work, correcting or changing those that don’t. Tighten this into a small iterative
loop, observing emergent patterns, amplifying good ones, and disrupting bad
ones, until you end up successful at your endeavour. In fact, it’s often the case
that by applying this process, you discover value at points along the way. Your
final product can end up looking very different to the original plan, and being
very much better. You could not have defined these benefits at the outset and
aimed for them; these are an example of emergent properties of the complex
system.

The ‘apply-inspect-adapt’ model of agile development is a probe-sense-re-
spond model. The Scrum project management framework utilises an iterative,
incremental model of development, with work divided into iterations (called
‘Sprints’), and a review and reflection step at the end of each iteration. This tech-
nique, called ‘inspect and adapt’, should properly be called apply-inspect-adapt,
otherwise the focus is not on actually doing anything. If we think about this, it
becomes clear that the apply-inspect-adapt loop is nothing else then the probe-
sense-response cycle used in the Cynefin method for dealing with issues in com-
plex domains.

This insight brings us full circle. We used a social complexity method to gain
understanding of the cognitive bias of Agilists towards the field of software de-
velopment, and ended by noticing that the Scrum framework implements the
exact method called for by the Cynefin method for managing work in the com-
plex domain. This leads us to the following conclusions:

•	 The theoretical underpinnings of Agile methods need to be understood for
such methods to become truly scalable and sustainable. Insights, and an-
swers to many of the questions, can be found in social complexity methods
such as Cynefin.

•	 Agile methods such as Scrum provide a lightweight, proven framework
for managing work in the complex domain, be it software development or
something else.

Software development is a rich domain, containing many aspects, a large per-
centage of which can be classified as complex. The interaction between these
aspects is also complex. Just as we have benefited from treating software devel-
opment as complex, and taking advantage of the toolbox of social complexity,
namely the Cynefin method, so the field (as well as many other fields of human
endeavour) would benefit from a multi-ontological approach, taking the best
techniques for the various domains, and combining them in an appropriate and
flexible manner. More work is needed to reach a deeper understanding of the

37Pelrine

inter-workings of agility and complexity, and it is the author’s hope that the first
(and following) workshops on complexity and real-world applications will not
only provide insights, but also motivate other researchers to look into these fas-
cinating fields.

Acknowledgements
Kent Beck, for being a strong source of motivation and inspiration; Dave
Snowden and George Rzevski, for their input and insights into social complex-
ity; Mark McKergow, for his excellent review and comments; Evelyn Harvey, for
research and editorial assistance

References
Beck, K. (1999). Extreme Programming Explained: Embrace Change, ISBN

9780201616415.

Cognitive Edge methods: Butterfly Stamping, http://www.cognitive-edge.com/meth-
od.php?mid=45.

Kurtz, C. and Snowden, D. (2003). “The new dynamics of strategy: Sense-making in a
complex and complicated world,” IBM Systems Journal, ISSN 0018-8670, 42(3): 462-
483, http://www.research.ibm.com/journal/sj/423/kurtz.html.

Petzinger, T. (1999). The New Pioneers: Men and Women Who are Transforming the Work-
place, ISBN 9780684846361.

Rittel, H. and Webber, M. (1973). “Dilemmas in a general theory of planning,” Policy Sci-
ences, ISSN 0032-2687, 4: 155-169.

Schwaber, K. and Beedle, M. (2001). Agile Software Development with Scrum, ISBN
9780130676344.

Snowden, D. (2005). “Multi-ontological sense-making: A new simplicity in decision
making,” http://www.cognitive-edge.com/ceresources/articles/40_Multi-ontology_
sense_makingv2_May05.pdf.

Snowden, D. and Boone, M. (2007). “A leader’s framework for decision making,” Harvard
Business Review, ISSN 0017-8012, 85(11): 69-76.

Spencer-Brown, G. (1979). The Laws of Form, ISBN 9780525475446.

Joseph Pelrine is C*O of MetaProg, a company devoted to increasing the quality
of software and its development process, and is one of Europe’s leading experts on
Agile software development. After studying philosophy, psychology, and music in
Vienna, his interests led him to work in the field of artificial intelligence and soft-
ware development. He worked as an assistant to Kent Beck in developing eXtreme
Programming, and is Europe’s first certified ScrumMaster Practitioner and Trainer.
Joseph Pelrine is an accredited practitioner for the Cognitive Edge Network, and his
work focus is on the field of social complexity science and its application to Agile
processes.

http://www.amazon.com/exec/obidos/ISBN=0201616416/welcometokurt-20
http://www.cognitive-edge.com/method.php?mid=45
http://www.cognitive-edge.com/method.php?mid=45
http://journalseek.net/cgi-bin/journalseek/journalsearch.cgi?field=issn&query=0018-8670
http://www.research.ibm.com/journal/sj/423/kurtz.html
http://www.amazon.com/exec/obidos/ISBN=0684846365/welcometokurt-20
http://www.uctc.net/mwebber/Rittel+Webber+Dilemmas+General_Theory_of_Planning.pdf
http://journalseek.net/cgi-bin/journalseek/journalsearch.cgi?field=issn&query=0032-2687
http://www.amazon.com/exec/obidos/ISBN=0130676349/welcometokurt-20
http://www.cognitive-edge.com/ceresources/articles/40_Multi-ontology_sense_makingv2_May05.pdf
http://www.cognitive-edge.com/ceresources/articles/40_Multi-ontology_sense_makingv2_May05.pdf
http://journalseek.net/cgi-bin/journalseek/journalsearch.cgi?field=issn&query=0017-8012
http://www.amazon.com/exec/obidos/ISBN=0525475443/welcometokurt-20

